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FORMATION OF A THERMAL STRUCTURE IN AN 

INHOMOGENEOUS METAL CONDUCTOR UNDER 

A HIGH-DENSITY ELECTRIC CURRENT 

V. I. Ikryannikov UDC 537.311.33 

The heating o f  a metal conductor with a localized inhomogeneous inclusion by a high-density electric current 

is discussed. 

A considerable number of papers on thermal phenomena in nonlinear media have recently been published (e.g., [1-4]). 
So-called thermal structures, i.e., localized spatially nonuniform steady-state temperature distributions, have been found to form 
under certain conditions in the regions of space where the processes are fastest. The structures can form when initially the 

nonlinear medium is spatially uniform and the temperature distribution is nonuniform [1, 2] as well as in the opposite case [3, 
4]. The mathematical differences are evidenced by the fact of the dependence of the heat equation explicitly only on the 
temperature in the first case but also on the spatial variables in the second case. To my knowledge, no one has yet tackled 

problems of the second type with an analytical approach. 
This paper considers the heating of a metal conductor, containing an inhomogeneous inclusion (inhomogeneity), by 

a high-density electric current. Inhomogeneity is construed as a region of space where the physical characteristics (in the given 
case, the electrical conductivity of the conductor) differ from those of the ambient medium. 

A similar problem was solved in [3, 4] by computer simulation of the medium using a network of nonlinear resistors 
with randomly distributed inhomogeneities. It was shown that with time these inhomogeneities extend (intergrow) across the 

current lines. The problem, however, was solved on the assumption of zero thermal conductivity of the medium. The 
distributions of the electric current and the temperature in a conducting medium with inhomogeneities in the initial stage were 

considered in [5]. 
Below we make a qualitative analysis of the dynamics of the intergrowth of a single inhomogeneity in a heat-conducting 

medium with Joule dissipation of energy, when the electrical conductivity of the inhomogeneity differs little from that of the 

medium. The mathematical problem is formulated as follows. 
An electric current of density j flows through an infinite metal medium (conductor) with an inhomogeneity located at 
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the origin and having a geometric shape described by the function fl(r, z). The current is directed along the z axis at an infinite 

distance from the inhomogeneity. We consider conductors of simple metals, for which the temperature dependence of the 

electrical conductivity has the form [6] 

o" = [1 q- am (r, z)l-lT -1. (1) 

Here o is the dimensionless electrical conductivity at the point (r, z) relative to %, the initial electrical conductivity of the 

conductor at infinity, T = I + e~(T m - TO); T m and T O are the instantaneous and initial temperature of  the medium, a = (aohr 

- 1) at T = 1, and r = z = 0 is the inhomogeneity parameter. The other physical quantities, i.e., the thermal diffusivity X, 

density % and heat capacity c, are assumed to be constant. It is assumed that no heat transfer occurs between the conductor 
and the ambient medium. 

The system of  equations describing the distribution of the temperature and the electric field will include the electric 

field equation curl E = 0, div j = 0, j = ~rE, E = - grad aS, the heat equation 

OT 
- -  v2T -k 6oj2/~ 

Ot 

and Eq. (1). The equations are written in dimensionless form: r, z are the coordinates expressed in units of  the characteristic 

inhomogeneity dimension R; j ,  E,  I, are current density, electric field strength, and electrical potential at the point (r, z) 

expressed in units of Jo (the amplitude of the current density), Jo/%, and RJo/a0, respectively; and t is the time expressed in 

R2/X. The parameter 6 0 = R2~Jo2/(XTcoo) is the ratio of the characteristic rates of Joule heating and heat removal due to 
thermal conductivity. 

The system of equations can be written as 

V=@ = - -  (grad �9 grad ~)/o, (2) 

aT 
0---t- = V2T -t- 6o(~ grad 09 grad q), (3) 

with the initial condition 

= [1 -k a~ (r, z)I-IT-* (4) 

T(r ,  z,~t = 0) = 1. (5) 

The solution of the problem (2)-(5) will be sought, with the condition that the inhomogeneity parameter a is small, as an 
asymptotic expansion 

�9 = 10 (t) exp (60 ~ iS (t) dt) ( - -  z + aO~ + 0 (a2)), (6) 

T = exp (60f ]2 (t) dt)(1 -t- aT1 -~- 0 (a2)), (7) 

jo(t) is the dimensionless current density at infinity. Substituting (6) and (7) into (2)-(5) and disregarding terms of the order 
of a 2, we obtain a system of equations in ~1 and T1, 

OT1 O~ (8) 
v2q~l = - -  Oz Oz" ' 

ot = v 2 T 1 - -  8~176 (t) 2 0 %  Oz + 2Vl + ~ (9) 
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at zero initial condition, zero conditions at infinity, and finite values of ~1 and T 1 at the center. For definiteness we assume 

that f](r, z) = e x p ( - r  2 - z2). By virtue of  the axial symmetry in cylindrical coordinates the solution of  the system (8), (9) 

depends only on the two coordinates r and z. Using the Fourier and Bessel integral transforms (in z and r, respectively), we 

can easily obtain the solution of  (8), (9), which at the center r = z = 0 has the form 

6o ! p~ 
T1 (t) - -  2 3 / ~  cos 20 sin 0d0 p~ exp - -  - -  - -  

o 4 

and a similar one for r where 

p~t - -  h (t) sin S 0 ) J (t) dp 

[ t 

h (t) = 260 2 ]o (t) dr, J (t) = .t'/~ (y) exp (9~y + h (y) sin ~ 0) dy. 
0 0 

As t ~ o= we have J(t) ----jo2(t)exp(p2t + h(t)sin20)/(p 2 + 2aoJoZ(t) sin20). Therefore, 

i . T~(t)-+ ]~(t~) 6o cos20sin0d0 92-+- 2'3o]o(t) sin~O 
21/--~ o 

Obviously, the temperature distribution in the conductor depends on how the current density jo(t) varies at infinity. 

Let us consider the characteristic modes. Suppose that jo(t) --, 0 as t --, o~. In this case, f rom Eqs. (8), (9) it follows that T 1 

--, 0 as t --, oo. This means that the local hot spots that arise are unstable: with time the temperature is distributed uniformly 

throughout the entire space of the conductor. Under these conditions stable thermal structures cannot exist. Suppose now that 

j0(t) --, oo as t --, o,.  In the Appendix we show that (10) leads to the asymptotic form 

T1 (t) N [ln (8~oig (t)) - - 6  + cl /4,  (11) 

where C = 0.57772... is Euler 's  constant. We see that the temperature rises without bound if jo(t) --, oo. 

Between the two modes of jo( t  ) variation considered exists a mode of constant current density, jo(t) = 1. In this case 

the asymptotic form (11) remains valid for r o > >  1, which means that the temperature distribution in the conductor reaches 

a steady state. To find the distribution of T 1 in the steady state for jo(t) = 1 we rewrite the system of equations (8), (9) as 

v2q) 1 _ OT1 Of~ (12)  
Oz Oz ' 

v2T*=~5o(  2 c9~I j Oz -? 2Tl  q- Q . (13) 

The solution of this system of equations for 5 o > >  1 is the function (for the derivation see Appendix) 

1 ~ 2z z 
T 1 (r, z) - -  exp ( - -  z 2) Ei ( - -  r 2) - -  exp ( - -  r z - -  z 2) q- 

4 

1 i x2 exp ( - -  x2/4) cos (zx) Ko (x2~/q/~)) dx, (14) 

where E i ( - x )  is an integral exponential function; Ko(x ) is a modified Bessel function of the second kind; and ~ - r/x/T o. For 

r = z = 0 Eq. (14) reduces to (11) with jo(t ) = 1. 

Figure 1 shows the isotherms T 1 = const for c3 o = 10 4 and a sketch of the distribution function Tl(r ,  z). We see that 

a thermal structure that was asymmetric in the coordinates was formed in the mode of constant current density under 

consideration. The position of  its maxima (r = + 1.3, z = 0) and minima (r = 0, z ~ +__ 1.3) coincide with those determined 

for the initial stage of  heating in [5], if we assume that in our case the inhomogeneity at the initial time was a sphere of  radius 

= 1.3. The condition for the formation of  a thermal structure in the problem under consideration is that the variation of the 

current density with time be a monotonically decreasing function. A general analysis of  Eqs. (8), (9) suggests that a structure 

resembling that shown in Fig. 1 will also exist as jo(t) --, ~ ,  but it will increase with time. 
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Fig. 1. 

. . . .  

Sketch of the thermal structure and isotherms in the 

neighborhood of an inhomogeneity. 

In practice which heating mode of the conductor appears will be determined by the ratio between the time constant r 

of energy input (time constant of the external electric circuit) and the characteristic time of temperature variation in the 

conductor. From (7) the latter is of the order of - 1/r o. If 7- > > 1/60, we can assume that the electric current in the conductor 

does not vary. We are not particularly considering a mode of oscillatory variation of current. It is clear from analysis that 

qualitatively it reduces to one of the modes considered above, depending on the relation between the oscillation period and 1/60. 

As a result of the exponential factor in the expression for the temperature T from (7) at long times even small 

perturbations of the electrical conductivity [ a [ < < 1 give appreciable differences of temperatures at inhomogeneity sites 

and at infinity. The technological defects, impurities, and other microscopic inhomogeneities that are always present in a real 

conduction, therefore, become centers of intensive Joule heating; in the final account this can cause uneven heat-induced 

fracture of the metal. 

These fracture effects are important in the design of high-power modern electrophysical devices. This includes devices 

of pulsed heating of plasmas, generators of strong and ultrastrong magnetic fields, high-current pulsed commutators, etc. [6]. 

Rapid heating of metals by an electrical current opens up extensive possibilities for obtaining experimental data in the high- 

temperature range [7]. It was not our aim here to study the mechanism of an electric explosion, but information about the effect 

of inhomogeneities on thermal processes in conductors can be an important prerequisite for constructing models of the fracture 

of materials in strong electromagnetic fields. 

A P P E N D I X  

1. Expression (10) can be written as 

o z  1 

T1 (" 92 exp (--  92/4) d9 ~ dx -}- 
2 -I/~- 6 o 

1 
4 2 l / y -  

- -  92 (O z @ Do) exp (-- 92/4) d 9 
- ( 9 2 + 2 D o ) - 2 D o x  2 

= - - 1  
~ / /  (A1) (2D~ ~ g~(2y-k 1) • 

16 1/~- ~ l + y  

Dog ) ln] /1-ky--1  dy, 
•  2 ] / l + y + l  
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where D O = tSoJo2(t); y = p2/(2Do). An estimate of the last integral [8] 

Doy ]/'1 -l-g--1 dy ~ C e x p (  D~ 1 
2 ) ln  ~ / ' l + g + l  2 

t / 

g *a 

makes it possible to write it as a sum f - - f + f  
0 0 , 

small integral on the right for D O > > 1. Setting e < 

series 

for any e > 0 and C = const and to discard the second exponentially 

1, expanding the function ln[(xfT + y - 1)/(-vrf + y + 1)] in a power 

[1 + 1,5y q- 0 (y2)] In (y/4) - -  y/2 + 0 (g2), 

integrating (A1) between the limits 0 and c, and discarding terms of the order of In D0/D0, we obtain (11). 

2. To find the solution of the system of equations (12)-(13) we write functions 4) 1 and T 1 as 

qh (,, z) = (I)~o (r, z) + Q0 (!, z) + -~o O~ (r, z) + 

1 " 1 ) , (A2) 

1 T Tl(r ,  z ) = T l o ( r ,  z)+Tlo(~, z ) +  ~ 11(r, z ) +  

- 1 

where } = r / ~  o. Substituting these series into (12)-(13) and equating the terms with the same powers of 8 o, we obtain the 

equations 

V2Oao + V~ Qo = - -  (vzTao + VzTIo + VzQ), (A4) 

VzOlo + VzQo + Tlo + IIo + Q/2 = 0, (A5) 

v ~ o .  + v~ Q~ + v~ Q0 = --  (wT~ + wILL (A6) 

v~T1 ~ _+_ 2 V~ Ho = 2vztI)n + 2v,Q1 + 2Tll + 2II1, 

where for brevity we have denoted the operators V z = O/Oz, Vz2 ---- 02/0Z 2, 

V~ ~ a~ r Or -~r  az 2 

Since Qo, Q1, IIo, and II 1 do not depend on r and r lO , f i l l ,  TlO, and Tll  do not depend on ~, Eqs. (A4)-(A7) split, 

V2(I)lo = - -  v~Tlo - -  Vz~Q, 

(A7) 

(A8) 
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Vz@lo + T10 = - -  .Q/2, (A9) 

2 
Vz Qo = - -  vzl-lo, (AIO) 

vzQ0 q- IIo = 0, (A11) 

2 
Vz Q1 + VJI1 + V~ <20 = 0, (A12) 

V~ IIo = 2v zQ t - k  2II1 

and two more equations for determining r and Tll .  From (A8)-(A9) we have 

(AI3) 

Z 
qho = - -  - -  exp (-- z 2) Ei (-- r ~) -t- fol (z) in (r) + [0~ (z), (A14) 

4 

Tlo = ~1__ - -  2z 2 exp (-- z ~) Ei (-- r 2) - -  exp (-- r z - -  z 2) 
4 2 

dfo~ in r dfo2 
dz dz ' (A15) 

where f01(Z) and fog(Z) are as yet undetermined functions of z. Equations (A10)-(A11) degenerate into one equation, 

V~Qo -1- IIo = 0. (A16) 

For a unique determination of Qo and 1I 0 we substitute this equation into the system (A12)-(A13), which can now have a 
solution if 

l 3 V Qo+ywHo=0. (A17) 

On condition that the solution is finite at infinity, from the system (A16)-(A17) we determine 

1 
Qo -- 2 ]/'~r-n i'. exp(-- i x z ) q ( x ) K o ( x ~ / - V ~  dx, (A18) 

--,m 

i 
I I  o ~ 2 ~  - exp (-- ixz) xq (x) Ko (x~/]/-ff) dx, (A19) 

where q(x) is as yet an undetermined function. 
We substitute solutions (A14), (A15), (A18), and (A19) into (A2)-(A3), discard the terms proportional to 1/~o, and 

from the condition that ~I and T 1 be finite at the center and vanish at infinity we find the functions fol, fo2, and q(x). As a 
result, we obtain (14) for T 1 and a similar expression for ~1. 

NOTATION 

Dimensionless quantities: r, z, cylindrical coordinates; t, time; j, current density; a, electrical conductivity; T, 
temperature; a, inhomogeneity parameter; ~, function of the geometric shape of the inhomogeneity; E, electric field strength; 
~5, electric potential; ~o, system parameter; jo(t), electric-current density at infinity; T1, function describing the temperature 
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distribution in the conductor (7). Dimensional quantities: c~, temperature resistance coefficient; %, initial electrical conductivity 

of the conductor at infinity; X, thermal conductivity; 3', density; c, heat capacity; R characteristic inhomogeneity dimension; 
Jo, amplitude of the current density. 
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TI:IERMODYNAMIC EQUILIBRIUM OF A GAS 

MIXTURE WITH A SOLUTION IN 

CONDENSED PHASE 

A. V. Kamennykh and G. P. Yasnikov UDC 541.123 

A thermodynamic analysis is made of the equilibrium of a gas mixture (using a nitrogen-hydrogen mixture 
as an example) with a solid solution of its components. The processes occurring in the surface layer and 
interphase exchange are taken into account. The equilibrium characteristics are determined in terms of the 

equilibrium constants of  the intermediate stages of the surface reactions. 

The penetration of a gas into a condensed material and the dissolution of gas-mixture components in the solid phase 

is a complex process consisting of a series of elementary stages: adsorption, desorption, dissociation, and recombination. The 
kinetics of such a process, the concentration of the dissolved gases, and other characteristics of the interaction of the gas with 
the solid depend on the rates of the surface reactions and the elementary stages [1]. Under certain conditions these stages can 
have a decisive effect on the process rate. Traditional methods of describing equilibrium solubility based on directly equating 

the chemical potentials of the dissolved atoms in the various phases and on the surface are often inapplicable. This is because, 
e.g., atoms can appear on the surface as a result of dissociation, catalyzed by the solid phase, and may be absent in the gas 
phase, which contains only molecular gas. Below we make a thermodynamic analysis of such a system with allowance for the 
dissolution of the gas-mixture components, which is of interest for the chemical and thermal treatment of materials. 

Specifically, we consider a nitrogen-hydrogen mixture that contains nitrogen, hydrogen, and ammonia and interacts 
with solutions of the components in the solid phase, taking into account the effect of the surface of the solid catalyst. This 

thermodynamic system contains two bulk phases (gas and solid) and one surface phase. We note that heterogeneous processes 
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